203: Electrical Installations Technology

Handout 4: Symbols and Scales

Symbols

Below is a selection of architectural symbols that you may find on a plan. These and others can be found on the inside rear cover of the IET On-Site Guide.

Switching					
one way	two way				
Intermediate	pull				
Sock	et outlets				
Switched	Unswitched D-				
fused connection units	switched fused connection units				
Lighting points					
Fluorescent	Incandescent O X				
Wall					
Various					
Cooker control unit	Consumer control unit CCU				
Integrated meter	Fuse				
Circuit breaker					

Scales

There need to be plans or drawings of where everything should go if an installation is to be completed accurately.

Drawing on a piece of paper the size of a whole house or factory would clearly be impracticable so a plan is drawn to scale, ie it is first decided how much smaller everything needs to be drawn on the paper. In order to retain accuracy, everything obviously needs to be made smaller by the same amount.

The most common scales in electrical installation are: 1:20, 1:50, 1:100.

In each case, everything is a 20th, 50th or 100th of its normal size, respectively.

A scale drawing is a drawing that represents a real object. The scale of the drawing is the ratio of the size of the drawing to the actual size of the object.

Example 1

The length of a building is 60 metres, its width is 40 metres and it is drawn to a scale of 1:100. What are the length and breadth of the building on the drawing?

Solution:

Length			Width		
Scale length	=	Actual length Scale	Scale length	=	Actual length Scale
	=	$\frac{60}{100}$		=	$\frac{40}{100}$
	=	0.6 metres		=	0.4 metres
	=	60cm		=	40cm

Example 2

On a plan with a scale of 1:50, a socket is measured at 23mm from a wall. How far from the wall must the socket be installed in the finished installation?

Solution:

or

Actual distance = Distance on plan
$$\times$$
 scale
= 23×50
= 1,150mm
= 1.15 metres